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Abstract. We consider the Hamiltonian cycle problem embedded in a singularly perturbed Markov
decision process (MDP). More specifically, we consider the HCP as an optimization problem over
the space of long-run state-action frequencies induced by the MDP’s stationary policies. We show
that Hamiltonian cycles (if any) correspond to the global minima of a suitably constructed indefinite
quadratic programming problem over the frequency space. We show that the above indefinite
quadratic can be approximated by quadratic functions that are ‘nearly convex’ and as such suitable
for the application of logarithmic barrier methods. We develop an interior-point type algorithm that
involves an arc elimination heuristic that appears to perform rather well in moderate size graphs.
The approach has the potential for further improvements.
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1. Introduction

This paper is a continuation of a line of research [4, 7, 10, 11, 12] which aims
to exploit the tools of controlled Markov decision chains (MDP’s)1 to study the
properties of a famous problem of combinatorial optimization: the Hamiltonian
Cycle Problem (HCP). More specifically, the present paper provides evidence
that computationally effective algorithms for determining Hamiltonicity can be
developed based on this approach. As such it can also be viewed as a continuation
of the numerical experiments begun in Andramanov et al. [4].
In this paper, we consider the following version of the Hamiltonian cycle

problem: given a directed graph, find a simple cycle that contains all vertices of
the graph �Hamiltonian cycle �HC�� or prove that HC does not exist. With respect
to this property—Hamiltonicity—graphs possessing HC are called Hamiltonian.
Next we shall, briefly, differentiate between our approaches and some of the best
known ‘classical’ approaches to the HCP.
Many of the successful classical approaches of discrete optimisation focus on

solving a linear programming ‘relaxation’ followed by heuristics that prevent the

1The acronym MDP stems from the alternative name of Markov decision processes.
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formation of sub-cycles. In our approach, we embed a given graph in a singularly
perturbed MDP in such a way that we can identify Hamiltonian cycles and sub-
cycles with exhaustive and non-exhaustive ergodic classes of induced Markov
chains.
More precisely, our dynamic, stochastic approach to the HCP, considers a

moving object tracing out a directed path on the graph G with its movement
‘controlled’ by a function f (a policy) mapping the set of nodes �=��G�=
�0�1�			�N � of G into the set of arcs �=��G� of G	 We think of this set of
nodes as the state space of a controlled Markov chain �=��G� where for each
state/node i, the action space ��i� �=�a��i�a�∈�� is in one-to-one correspon-
dence with the set of arcs emanating from that node or, equivalently, with the
set of endpoints of those arcs.

ILLUSTRATION. Consider the complete graph G5 on five nodes (with no self-
loops) and think of the nodes as the states of an MDP, denoted by �, and of the
arcs emanating from a given node as of actions available at that state. In a natural
way the Hamiltonian cycle c1� 0→1→2→3→4→0 corresponds to the ‘deter-
ministic policy’ f1 � �0�1�2�3�4�→�1�2�3�4�0�, where f1�2�=3 corresponds to
the controller choosing arc �2�3� in state 2 with probability 1. The Markov chain
induced by f1 is given by the ‘zero-one’ transition matrix P�f1� which, clearly,
is irreducible. On the other hand, the union of two sub-cycles: 0→1→2→0
and 3→4→3 corresponds to the policy f2 � �0�1�2�3�4�→�1�2�0�4�3� which
identifies the Markov chain transition matrix P�f2� (see below) containing two
distinct ergodic classes. This leads to a natural embedding of the Hamiltonian
cycle problem in a Markov control problem �. The latter MDP has a multi-
chain ergodic structure which considerably complicates the analysis. However,
this multi-chain structure can be ‘disguised’—but not completely lost—with the
help of a ‘singular perturbation’. For instance, we could easily replace P�f2� with
P��f2�:

P�f2�=



0 1 0 0 0
0 0 1 0 0
1 0 0 0 0
0 0 0 0 1
0 0 0 1 0


 and P��f2�=



0 1−3�2 �2 �2 �2

� 0 1−� 0 0
1 0 0 0 0
� 0 0 0 1−�
� 0 0 1−� 0


	

The above perturbation is singular because it altered the ergodic structure of
P�f2� by changing it to an irreducible (indeed, completely ergodic) Markov Chain
P��f2�.
It is now convenient to work in the so-called long-run frequency space, X�, of

state action frequencies. The effect of our perturbation is such that the long-run
frequency of visits to state/node 0—for a policy that traces out a Hamiltonian
Cycle—can be explicitly calculated as x0=1/d1+N ��� (see Proposition 1) and
introduced as an additional constraint on the frequency space. In [7] it was
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shown that Hamiltonian cycles are precisely the global minimizers of a suitably
constructed quadratic program:

minxTQx

x∈X� & x0=1/d1+N ���	

Furthermore, at the minimum xTQx=0 which is equivalent to the policy corre-
sponding to a minimizer belonging to the set of deterministic policies. Note that
Q is indefinite, but possesses a lot of special structure.
The fundamental idea of this paper is to consider a ‘more convex’ objec-

tive function than xTQx. Such a function h� can be constructed for small �>0
as S�x�−�s�x�, where S�x�=∑

i�
∑

axia�
2� s�x�=∑

i

∑
ax

2
ia, and xia is the fre-

quency of choosing arc a when leaving node i. The non-convexity is due to
�s�x� that can now be controlled with the small factor �	 We prove that the
global minimum of h� occurs if not at HC itself then in its small neighbour-
hood sufficient to recover the HC. In view of this it is reasonable to hope that
an interior point algorithm that works well for convex quadratic programs may
also work ‘well-enough’ for the above surrogate problem, when � is sufficiently
small.
We develop a heuristic, within an interior point method, that searches for a

local minimum of h� instead of the global one and decides that a particular arc
is used at the prospective HC if it is ‘dominant’ among all arcs from the same
node at the local minimum point. The dominant arcs are then declared to be part
of a prospective HC and other arcs from the corresponding nodes are eliminated.
This simplifies the structure of the original graph.
It is often the case that even a single dominant arc causes a cascade of further

reductions. However, it may happen that there are no dominant arcs in the original
setting. Then we need to use some branching algorithm that chooses exactly one
arc from a particular node and then applies the dominant arc search.
We report a series of numerical experiments with this heuristic. We found that

it seems to perform very well on small to moderate size graphs. For instance,
on randomly generated graphs with some 100 nodes and 300 arcs, the heuristic
found Hamiltonian cycles in approximately 107 s. For structured graphs such as
the ‘Knight’s tour’ problem we succeeded in solving an instance of the 32×32
chessboard, albeit in 9 h and 57 min. We also report the performance of our
interior point heuristic on cubic ‘generalised Petersen graphs’ [1] that have gen-
erated interest among graph theorists. We found that instances of these graphs
with approximately 500 arcs were solved in about 1 min. Finally, in our exper-
imentation, we found only one instance of a graph where our heuristic failed to
find a Hamiltonian cycle. This was a 94 node graph with 282 arcs. Of course, the
heuristic could be replaced by a complete algorithm that was guaranteed to pro-
duce a definitive answer but at the cost of returning to the previously eliminated
‘non-dominant’ arcs. The subject of an efficient implementation of the latter is
part of the continuing research.
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2. A Formulation of HCP by Means of a Perturbed MDP

The Hamiltonian Cycle Problem (HCP) to find a simple cycle of 1+N arcs,
that is a Hamiltonian Cycle or a tour, in a directed graph G with 1+N nodes
numbered from 0 to N and with m arcs �i�a�, or to determine that none exist.
Recall that a simple cycle is one that passes exactly once through each node
comprising the cycle. We will identify G with its adjacency matrix

G�i�a =
{
1 � G contains arc �i�a�

0 � otherwise	

We employ the following perspective of the HC problem, introduced in [14]:
Consider a moving object tracing out a directed path on the graph G with its
movement ‘controlled’ by a function f mapping the set of nodes �=��G�=
�0�1�			�N � of G into the set of arcs �=��G� of G. We think of this set of
nodes as the state space of a Markov decision process �=��G� where for each
state/node s, the action space

��i�=�a��i�a�∈��

is in one-to-one correspondence with the set of arcs emanating from that node,
or, equivalently, with the set of endpoints of those arcs. In order to ensure that
our MDP is irreducible we now introduce the perturbed transition probabilities
for � to create an �-perturbed process �� (for 0<�<1) defined by

p��j$i�a =




1−�N −1��2 � if i=1 and a=j
�2 � if i=1 and a �=j
1 � if i>1 and a=j=1
�� if i>1 and a �=j=1
1−�� if i>1 and a=j >1
0 � in all remaining cases	

Here p��j$i�a� represents the probability of moving from the node i to the node j
by choosing the action �i�a�, so

N∑
j=0

p��j$i�a =1 for all �i�a�∈�	 (1)

Note that with the above perturbation, for each pair of nodes i�a (not equal to 1)
corresponding to a ‘deterministic arc’ �i�a�� our perturbation replaces that arc by
a pair of ‘stochastic arcs’ �i�1� and �i�a� with weights � and �1−�� respectively.
This stochastic perturbation has the following interpretation: a decision to move
along arc �i�a� results in movement along �i�a� only with probability �1−�� and
with probability � the process returns to the home node 1; a decision to move
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along arc �1�a� results in movement along �1�a� with probability 1−N�2 and
with probabilities �2 along the remaining N arcs �1�a′�$a′ �=a. The quadratic in
� part of the perturbation ensures that there will arise only irreducible Markov
chains defined by stationary strategies through the above perturbation.
A policy or a strategy is defined by �1+N�×�1+N� stochastic matrix f (rows

of f add up to 1) with entries

f �i�a =
{
probability of action a in state i whenever i is visited � a∈��i�
0 � a �∈��i�	

Strategies compose the strategy space denoted by FS . A strategy is called deter-
ministic if f �i�a ∈�0�1� for all i and a	 That is, for each i the controller chooses
some particular action a∈��i� with probability 1 whenever i is visited. In this
case we will also write f �i�=a	 The space of deterministic strategies will be
denoted by FD	 The fact that the controller’s decision does not depend on the time
of a visit to the state i is reflected in the name stationary policy often used for
a strategy. Any stationary policy f gives rise to a �1+N�×�1+N� probability
transition matrix P��f� with entries

P��f��i�j �=p��j$i�f� �=
N∑

a=0

p��j$i�a f �i�a 	

The above implies that P��f� is also a stochastic matrix. In matrix notations the
Markov chain P��f� can be written as a regular perturbation of f given by

P��f�= f+�&1�lf&1�r +�2&2�lf&2�r

where &1 and &2 are sparse matrices with the entries

&1�l�i�a =
{
1 � a= i>0
0 � otherwise�

&1�r �i�a =


1 � a=0
−1 � a= i>0
0 � otherwise�

&2�l�i�a =
{
1 � i=1
0 � otherwise�

&2�r �i�a =


0 � a=0
1−N � a= i>0
1 � otherwise�

and so P��f� may be considered as a non-degenerate operator on stochastic
matrices.
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One feature of an irreducible Markov chain P is the simple description of its
Cesaro-limit matrix Q that has identical rows q=�q0�			�qN �>0 that represent
the unique solution of the linear system of equations:

qP=q
q1=1�

where 1 is an N -dimensional column vector with unity in every entry. The vector
q is called the stationary distribution of the irreducible Markov chain P.
Consider the irreducible Markov chain P��f� determined by a stationary policy

f . Let q�f� be its stationary distribution vector. For each a∈��s�� i∈� define
the long-run frequency of the state-action pair �i�a�∈��i� as

xia�f� �=qs�f�f �i�a 	

The long run frequency of the state i is defined as the aggregate

xi�f� �= ∑
a∈��i�

xia�f�=qs�f��

where the last equality follows from the fact that
∑

a∈��i�f �i�a =1. Components
�xi� form the long-run state frequency 1+N row vector

x̄�f�=�x0�f��x1�f��			�xN �f��	

Furthermore, define the long-run (state-action) frequency vector x�f� induced by
f as the block-column vector whose i-th block is

xi�f�=�xiai
1
�f�� xiai

2
�f��			�xiai

mi
�f��T �

where ai
j ∈��i� and mi is the number of arcs in ��i�. The construction of x

defines a map M of the strategy space FS into �m by

M�f� �=x�f�	
The quadratic in � part of the perturbation ensures that xi�f�>0 for each i	
Therefore, M is invertible and its inverse M−1 is defined by

M−1�x��i�a =fx�i�a �= xia

xi

	

It is shown in [14] that the property that x̄ is the stationary distribution vector
for P��f� is equivalent to the inclusion x̄∈X�� where X� is a polyhedron in �m,
defined by the linear constraints

(i)
N∑

i=0

∑
a∈��i�

�+�i�j�−p��j$i�a �xia=0$ j∈�
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(ii)
N∑

i=0

∑
a∈��i�

xia=1

(iii) xia�0$ a∈��i�� i∈��

with Kronecker + coefficients +�i�j�.
In matrix notations X� can be defined as

X�=�x �W�x=0� 1Tx=1� x�0��

where x, 1 are both m-vectors (1 has unity in every entry), and W� is an �1+
N�×m matrix with rows numbered by vertices � and columns by arcs � whose
�j��i�a��th entry is

w��j��i�a� �=+�i�j�−p��j$i�a 	

Construction of X� provides a connection between W� and the incidence �1+
N�×m matrix D�G� of the graph defined as

D�G��j��i�a� =



1 � i=j
−1 � i=a
0 � otherwise

LEMMA 1. Matrix W� is a (�-quadratically) perturbed incidence matrix D.
Proof. By augmentation of several matrices Qi with the same number of rows

we mean ‘joining’ them horizontally, hence, preserving the number of rows. This
operation will be denoted as augmentiQi	 Following the definition of W� we
observe that

W�=&−augmentiWi�

where & is the ‘state-arc’ analogue of the Kronecker +:

&�j��i�a� =
{
1 � j= i

0 � otherwise

and Wi is the �1+N�×mi-matrix with entries

Wi�j�a =p��j$i�a 

The definition of p��j$i�a implies the claim of the lemma. �

We note, that it is clear from the definition of p��j$i�a that each column of Wi

adds up to 1, so, each column of W� adds up to 0. Thus, rank�W���N	 In fact,
since rank�D�G��=N (by [6]), it follows from the Lemma (1) that rank�W��=N
for small �	
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We now recall [14] the partition of the space FD of deterministic strategies that
is based on the subgraphs they ‘trace out’ in G. In particular, note that with each
f ∈FD we associate a subgraph Gf of G defined by

arc �i�a�∈Gf ⇐⇒ f �i�=a	

We shall also denote a simple cycle of length 1+k and beginning at 0 by a set
of arcs

c0
1+k=��i0=0�i1���i1�i2��			��ik�i1+k=0��$ k=2�3�			�N 	

Thus, c0
1+N is a HC	 If Gf contains a cycle c0

1+k we write Gf⊃c1
1+k. Define, for

each k=2�3�			�N , the set

C0
1+k �=�f ∈FD� Gf⊃c0

1+k��

namely, the set of deterministic strategies that trace out a simple cycle of length
1+k, beginning at 0. Thus,

⋃N
k=1C

0
1+k contains all strategies that start at 0 and

the node where the strategy for the first time returns to is also node 0. Denote the
complement to

⋃N
k=1C

0
1+k in FD by B	 Then B will contain strategies that start at

the home node 0 and the node where the strategy for the first time returns to is
different from node 0. The following proposition can be proved along the same
lines as the analogous result in [9] and [11]. It characterizes the partition

FD=
[ N⋃

m=2

Cm

]⋃
B

by means of the long-run frequency x0�f� of visits to the home node 0:

PROPOSITION 1. Let �∈�0� 1√
N−1

�, f ∈FD, and x�f� be its long-run frequency
vector �that is, x�f�=M�f��. The long-run frequency of visits to the home state 0
is given by

x0�f� =
∑

a∈��1�

x0a�f�

=




1
d1+N ���

= 1
1+N

+O��� � if f ∈C1+N

1
d1+k���

+O���= 1
1+k

+O��� � if f ∈C1+k� k=1�2�			�N −1

�

1+�
+O���$ � if f ∈B�

where

d1+k���= 1−�1−��k

�
+�+�1+�k−1����1−��k=1+k+O���	
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The above proposition leads to the following characterization of HC in G:

COROLLARY 1 [14]. Hamiltonian Cycles of the graph G are in 1 �1 correspon-
dence with those points of X� which satisfy

(i) x0=
∑

a∈��0�x0a=
1

d1+N ���

(ii) For every i∈� , xi=
∑

a∈��i�xia >0 and xia

xi
∈�0�1� for each a∈��i�, i∈� .

We now interpret the HC problem as an optimization problem. Let

S�x� �=∑
i

x2
i =

∑
i

( ∑
a∈��i�

xi�a

)2

=xTE�G�x�

where E�G� is the block-diagonal matrix consisting of 1+N blocks with its ith
block being a mi×mi matrix full of units. Let

s�x� �=∑
i

∑
a∈��i�

x2
i�a=xT Imx�

where Im is the identity matrix of size m. Consider the quadratic form

Q�x� �= S�x�−s�x�

= ∑
i

Qi�xi�

= ∑
i

(( ∑
a∈��i�

xi�a

)2

− ∑
a∈��i�

x2
i�a

)

= xTQ�G�x	

Here Q�G� is a block-diagonal matrix with its i-th block being an mi×mi matrix
with all diagonal elements equal 0 and all off-diagonal elements equal 1. We
observe that

Qi�xi�=
( ∑

a∈��i�

xi�a

)2

− ∑
a∈��i�

x2
i�a=

∑
a�b∈��i��a�=b

xi�axi�b�

is nonconvex and has nonnegative value for any nonnegative xi and that Qi�xi�
is zero if and only if at most one of variables xi�a is nonzero.
The following indefinite quadratic programming problem is closely related to

the HC problem:

min xTQ�G�x
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subject to:

(i) x∈X�

(ii) x0=
∑

a∈��0�x0a= 1
d1+N ���

	 (2)

THEOREM 1 [14].

(i) Let f be a HC in G. Then x�f� is a global minimum of (2) and xTQ�G�x=0.
(ii) Conversely, let x∗ be a global minimum of (2) such that �x∗�TQx∗=0. Then

f∗x =M−1�x∗� is a deterministic strategy which traces out a HC in G.

We note that both constraints in (2) can be expressed as a single linear equation

A��G�x=b� x�0� (3)

where

(i) A��G� is �N +3�×m matrix that is obtained from W� by adding two rows
at the bottom: one full of units and the other consisting of units at positions
�0�a� corresponding to the arcs emanating from the home node 0 and of
zeroes elsewhere,

(ii) b is �3+N�-vector consisting of zeroes for the first 1+N components, b2+N =
1� and

b3+N = 1
d1+N ���

	

It is important for numerical purposes that system (3) has maximal rank. In
fact, as rank�W��=N , the maximal rank of A��G� is, therefore, at most N +2.
The lemma below ensures the maximality of the rank�A��G�� for communicating
graphs, (i.e. graphs such that for any pair of nodes �i�j�⊂��G� there exists a
path between i and j in G). Without loss of generality we may assume that G is
communicating, otherwise, clearly G does not contain a HC. As was shown in
[16], it takes polynomial time to verify the communication property for a given
graph G.

LEMMA 2. If graph G is communicating then rank�A��G��=2+N for
�∈

(
0� 1√

N−1

)
.

The proof of this lemma is purely technical, so it is relegated to the Appendix.
For our heuristic the single objective function Q�x� is insufficient. Our algorithm
requires a one-parameter family of objective functions that (if the graph G con-
tains an HC) achieve a (global) minimum at a HC or in a small neighbourhood
of a HC so that the HC can be recognized by the location of such global minima
in X�. It appears that the convex combination

f��x� �=S�x�−�s�x�=�Q�x�+�1−��S�x�� 0<��1
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provides such a family. By argmin�f��x�� we denote the location of a global
minimum of f��x� in X�.

LEMMA 3. If G contains a HC then for every +>0 there exists �0�+���>0
such that for every � from 0<���0�+��� a global minimum �argmin�f��x���
lies in the +-neighbourhood of a HC in G.
Proof. Let x0 �=x0���=argmin�f��x�� and let xHC be a frequency vector

corresponding to HC. As Q�xHC�=0 and, by Proposition 1, S�xHC�= 1
1+N

+O����

then,

f��x
0�����f��xHC�= 1−�

1+N
+O���	

Since the functional S�x� takes its minimal value for all equal values xi= 1
1+N

� i=
0�			�1+N� it follows that S�x�� 1

1+N
for all x∈X�. Therefore, S�x0�= 1

1+N
+

O���. Also, Q�x0� should be of the order O���, which implies that x0 is located
in a small neighbourhood of an extreme point x∗ in X�. Since map M establishes
1−1 correspondence between the extreme points of X� and the deterministic
policies FD on �� it follows that fx∗ �=M−1�x∗� is a deterministic policy. By
Proposition 1 the only available option for fx∗ to satisfy x0�fx∗�= 1

1+N
+O��� is

that fx∗ =HC. �

3. Solution of QP with an Interior Point Method

The theory [21] and the implementation [3] of interior point methods for opti-
mization are well understood. Interior point methods have been used extensively
in studying combinatorial optimization problems; a survey can be found in [18].
These methods offer a number of advantages, specially when applied to very
large problems. Since we intend to apply our approach to large sparse graphs we
decided to employ an interior point algorithm to solve the nonconvex quadratic
problem (2). We use HOPDM solver [2, 15] for this purpose. Below we discuss
the main issues of this application.
An interior point algorithm for quadratic programming implemented in

HOPDM is the primal-dual method with multiple centrality correctors. The algo-
rithm is applied to the primal-dual formulation of the quadratic program

Primal Dual

min cTx+ 1
2x

TQx max bTy− 1
2x

TQx
s.t. Ax=b� s.t. ATy+s−Qx=c�

x�0$ y free, x�s�0�
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where A∈�m×n�Q∈�n×n, x�s�c∈�n and y�b∈�m. The main computational
effort of this algorithm consists in the computation of the primal-dual Newton
direction. This requires solving the following linear system

 A 0 0
−Q AT I

S 0 X




&x

&y
&s


=


 7p

7d

78


� (4)

where

7p = b−Ax�

7d = c−ATy−s+Qx�

78 = 8e−XSe�

and X an S denote n×n diagonal matrices in which vectors x�s∈�n are spread
across the diagonals, respectively. After an elimination of

&s=X−178−X−1S&x

the Newton system is reduced to:[−Q−X−1S AT

A 0

][
&x
&y

]
=
[

7d−X−178

7p

]
	 (5)

The matrix involved in (5) is symmetric but indefinite (even for a convex problem
when Q is positive definite). For the sake of efficiency, in HOPDM implemen-
tation [2], the matrix in the reduced Newton system is regularized with diagonal
terms Rp and Rd

H =
[−Q−X−1S AT

A 0

][−Rp 0
0 Rd

]
(6)

to obtain a quasidefinite one [19]. This allows the use of Cholesky-like fac-
torization in which an LDLT decomposition is found with diagonal matrix D
containing both positive and negative elements. The use of primal-dual regular-
ization (6) guarantees the existence of Cholesky-like factorization with diagonal
D and avoids the need of using the 2×2 pivots required otherwise to decompose
an indefinite matrix [5, 8].
A direct application of an interior point optimizer to solve (2) faces two

difficulties. First, a considerable density of diagonal blocks in Q�G� causes the
symmetric LDLT decomposition of matrix H in (6) to become very dense, which
adversely affects the efficiency of the interior point method. Secondly, the matrix
Q�G� is indefinite and the quadratic problem (2) has many local minima. Below
we discuss our approach to addressing these difficulties.



AN INTERIOR POINT HEURISTIC FOR THE HAMILTONIAN CYCLE PROBLEM 327

Diagonal blocks in Q�G� can be represented as rank-one corrections of diagonal
matrices. Indeed, for

Qi�xi� �=
( ∑

a∈��i�

xi�a

)2

− ∑
a∈��i�

x2
i�a=xT

i Qixi

we write

Qi=



1
1
			
1



[
1 1 ··· 1 ]−I =



0 1 ··· 1
1 0 ··· 1
			

			
	 	 	

			
1 1 ··· 0


	

By introducing an auxiliary variable

xi=
∑

a∈��i�

xi�a (7)

we transform the quadratic form Qi�xi� into a diagonal one

Q̃i�xi�xi�=x2
i −

∑
a∈��i�

x2
i�a	

Of course, we have to add one new constraint (7) and one new variable xi for
each node of the graph in the reformulated quadratic program. Therefore instead
of N +3 constraints and ��� variables in (2) the new QP formulation has 2N +4
constraints and ���+N +1 variables. However, the system (5) obtained for such
a transformed problem has the diagonal matrix Q̃ and the interior point imple-
mentation that takes full advantage of the sparsity of this separable formulation.
Nonconvexity of the quadratic programming problem means that the matrix

−Q−X−1S in the upper left corner of system (5) is not necessarily negative
definite. Consequently, there is no longer a guarantee that the small primal and
dual regularizations Rp and Rd would suffice to make H in (6) quasidefinite. Since
the main objective of primal-dual regularizations [2] is to guarantee the existence
of a triangular decomposition of H , one way to proceed is to accept positive pivots
corresponding to the upper left corner whenever they appear and are sufficiently
stable and use the primal regularization Rp only to correct pivot candidates which
are dangerously close to zero. Another approach consists of correcting all positive
pivot candidates in the upper left corner by subtracting large enough regularization
terms. This approach is equivalent to a convexification of the objective. We
have implemented the latter approach. To reduce the perturbation introduced by
potentially very strong regularization we have used in our approach a different
objective, namely:

f��x� �=S�x�−�s�x�
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which, after a transformation to a separable form, gives the following ith term

Q̄i�xi�xi�=x2
i −�

∑
a∈��i�

x2
i�a	

This function is still nonconvex. However, its negative curvature decreases when
� is reduced. Consequently, a weaker regularization suffices to convexify the
problem. Lemma 3 provides a theoretical foundation for the use of f��x�.

4. Heuristics Based on the QP Solution

For an arbitrary (nontrivial) problem there is little chance to solve the nonconvex
QP and obtain the global minimum, i.e., attain the zero objective value in (2). If
this happens we immediately obtain a Hamiltonian Cycle. What is more likely
to happen is that one of the numerous local minima of (2) is found. Such a
solution has at least one set of frequencies for which there are two or more
nonzero elements in xi�a�a∈��i�. In the usual situation when a nonconvex QP
corresponding to a large graph is solved the local optimal solution has many
nodes i with such a property. Consequently, we cannot translate the solution into a
HC. However, this local solution provides us with a lot of useful information and
allows the use of heuristics to find a HC. The heuristics rely on the interpretation
of the solution xi�a as frequencies of traversing an arc �i�a� in the graph.

ARC ELIMINATION

For the optimal solution (local minimum) of the quadratic problem we compute

f �i�a =xi�a/xi� a∈��i�	

These variables can be interpreted as relative frequencies of leaving node i by
appropriate arcs originating from i. If f �i�a is negligible, that is, if f �i�a <+

for some prescribed tolerance +, then the arc �i�a� is eliminated from the graph
as unlikely to be a part of a HC. After arc elimination the new quadratic program
for the reduced graph is solved and the analysis is repeated. After a few of
these reductions and repeated QP solutions we eventually observe that no more
arcs satisfy the elimination criteria. If the last solution corresponds to the case
that for each node i only one variable f �i�a is equal to 1, that is, out of all
possible outgoing arcs only one is used, then a Hamiltonian cycle is found.
However if two or more of variables f �i�a are bounded away from zero, then
we start branching on these variables.
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BRANCHING

Branching is a technique widely used in integer programming [20]. In our
approach we analyze the solution of the current quadratic program �k (corre-
sponding to the reduced graph Gk) and if this solution has any node i with two
or more variables which satisfy f �i�a �+, then we replace the problem with
a set of ���i�� new problems. Each of them corresponds to a different reduced
graph in which �i�a� is the only arc leaving node i and all remaining arcs which
originated from i have been removed.
This branching forces the use of one particular arc leaving node i. By

replacement of the original problem with a tree of problems branching inevitably
increases the computational complexity. This technique applied in the context of
integer programming is often combined with other techniques such as pricing and
cut generation which help to prevent uncontrollable growth of the search tree.
In our approach branching strategy is combined with an arc elimination technique
which results in a fast reduction of the size of the graph. However, search trees
may occasionally grow to very large depths. We discuss this in more detail in
the next section.

5. Implementation and Numerical Results

The approach presented in this paper has been implemented using
HOPDM interior point solver (http://www.maths.ed.ac.uk/˜gondzio
/software/hopdm.html). We have run the program on the 200 MHz Pen-
tium III PC with Linux operating system.
Nonconvex quadratic problems of form (2) are formulated using the auxiliary

variable xi (7) to guarantee the separability. Small parameter �=0	01 or �=0	001
in f��x� is used to limit the negative curvature of the quadratic function. The
arc elimination procedure is run after a local solution to the QP is found. The
elimination threshold +=0	01 has been used in our computations. Whenever an
elimination occurs the new QP is solved for the reduced problem. Branching starts
when no more reductions are possible. At this stage the optimization algorithm
switches to the use of search tree. For a given graph (reduced by the earlier
arc elimination) a family of subgraphs is created and the procedure identical as
described earlier is applied to each of the subgraphs. A combination of branching
and arc elimination accelerates the reduction of the graph size. However, every
branching increases the size of the tree and potentially contributes to a significant
growth of the computation time necessary to analyze the tree.
We have used a hybrid strategy to search the tree. For the first two or three

levels of the tree we use the breadth-first-search order. Then the list of most
attractive nodes in the tree (the ones corresponding to the smallest possible graphs)
is created. Each of these nodes is processed in the same way as the initial graph,
that is, a sequence of QP problems is solved each resulting with arc eliminations.
When no more elimination is possible we apply branching to the problem. All
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children of the node are processed in a similar way. However only the most
promising one (corresponding to the smallest graph) is further analyzed. In other
words, we use the depth-first-search order to promote a fast decrease of the graph
size. Such a strategy is promising for graphs which do have a HC.
We have applied our approach to three classes of problems:

(i) randomly generated graphs,
(ii) knight’s tour problems,
(iii) cubic graphs.

The first class of problems needs little introduction. We have developed these
problems for the purpose of testing the approach. In Table 1 the sizes of graphs
(number of nodes and arcs) and the overall CPU times in seconds needed to
find a HC are reported. The analysis of results collected in Table 1 indicates the
potential of the approach but also indicates the fast growth of the solution time
when the size of the graph increases.
The knight’s tour problem consists in finding a tour of the knight to visit each

square of the k×k chessboard exactly once. This problem has received a lot of
attention from the research community and a variety of algorithms have been
developed for its solutions, see for example [17]. The problem has a solution only
for even k�6. Table 2 gives the solution for the 6×6 chessboard: the numbers in
the fields provide the order in which the knight visits them. In Table 3 the sizes
of graphs and the corresponding solution times for the knight’s tour problems are
reported. From the analysis of these results we conclude again that the approach
proposed in this paper provides solution to HC problems of moderate size in
acceptable computation time. We also observe that the solution time grows rapidly
for a larger graph corresponding to the 32×32 chessboard.
Finally, in Table 4 we report the sizes of graphs and the CPU times needed

to find Hamiltonian cycles in Generalised Petersen (GP) cubic graphs GP�n�k�
(see [1] for the discussion of Hamiltonicity of the GP graphs).

Table 1. Solution times for randomly generated graphs.

Problem Nodes Arcs Time (CPU ses)

Rand1 25 59 1	48
Rand2 30 72 0	44
Rand3 40 100 3	92
Rand4 50 150 7	92
Rand5 100 293 107	15
Rand6 110 323 12	94
Rand7 120 353 67	23
Rand8 130 392 19	11
Rand9 140 402 147	53
Rand10 150 420 1267	07
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Table 2. Solution for the 6×6 chessboard problem.

4 15 34 27 6 17
35 26 5 16 33 28
12 3 14 29 18 7
25 36 11 32 21 30
10 13 2 23 8 19
1 24 9 20 31 22

Table 3. Solution times for the knight’s tour problem.

Problem Nodes Arcs Time (CPU s)

Chess6 36 160 1	25
Chess8 64 336 3	35
Chess10 100 576 29	77
Chess12 144 880 33	58
Chess14 196 1248 194	45
Chess20 400 2736 819	10
Chess32 1024 7440 35697	00

Table 4. Solution times for cubic graphs.

Problem Nodes Arcs Time

GP(29,5) 58 174 12	26
GP(41,5) 82 246 29	42
GP(59,5) 118 354 29	42
GP(89,8) 178 534 60	97

6. Appendix

PROOF OF LEMMA 2

If there is a single arc emanating from every node of G, the communication
property implies that G is itself a HC. For G=HC the claim is straightforward.
Assume that there is a node i with at least two arcs �i�a0� and �i�a1� in ��i�.
We reorder the nodes of G so that node a0 becomes the home node ‘0’, node
i becomes node ‘2’ and node a1 becomes node ‘1’. As A��G� is a �-perturbation
of A0 �=A�=0�G�, it will be sufficient to prove that rank A0=2+N . Let <0�2 be a
shortest (w.r.t the number of involved arcs) path from ‘0’ to ‘2’. Suppose that <0�2

traces out the path 0→ i1→ i2→···→ is →2. Suppose there exists a vanishing
non-trivial linear combination of the rows Aj�j=0�1�			�2+N of the matrix A0 �

=A2+N +8A1+N +
N∑

i=0

>iAi=0	 (8)

Since
∑N

i=0Ai=0, we assume that >0=0. For the arc �0�i1� Equation (8) implies:

>0−>i1
+8=0�
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hence,

>i1
=8 (9)

For consecutive arcs �i1�i2��			��is−1�is���is�2� Equation (8) further reads:

>i1
−>i2

+==0�			�>is−1
−>is

+==0� >is
−>2+==0	

So, by (9) and by induction on s one obtains:

>i2
=>i1

+==8+=�			�>is
=8+�s−1�=� >2=8+s=	 (10)

Arcs �2�0� and �2�1�, respectively, contribute:

>2−>0+==0

and

>2−>1+==0	

Combined with (10) this implies:

8=−�s+1�= and >1=0	 (11)

Choose <1�0 to be the shortest path 1→j1→···→jr →0 from ‘1’ to ‘0’. For
the arc �1�j1� Equation (8) implies:

>1−>j1
+==0� hence� >j1

==	

Arc �j1�j2� in (8) contributes

>j1
−>j2

+==0� so� >j2
=>j1

+==2=	

Consideration of consecutive arcs in <1�0 up to �jr−1�jr� and induction on r lead
to

>jt
= t=� t=1�2�			�r	

Finally, arc �jr �0� implies:

>jr
−>0+==0� so ==0 since >0=0	

It now follows from(11) that 8=0. It remains to prove that the only vanishing
linear combination

∑N
i=0>iAi with >0=0 has to be trivial. This follows from

the property of the incidence matrix D�G� that its rank equals the number of
nodes take the number of connected components of the graph ([6], pp. 23–24).
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For the simple situation of a single connected component (as in the case of a
communicating graph) we supply a short proof: denote by � j

0 those nodes that
can be reached from node ‘0’ by a path of length j. Then the entire ��G� admits
a representation

��G�=
j=p�N⋃

j=0

� j
0 	

For each i1∈�1
0 arc �0�i1� in (8) contributes:

>0−>i1
=0� so� >i1

=0	

For each i2∈�2
0 there exists i1∈�1

0 adjacent to ‘i2’. So,

>i1
−>i2

=0� hence� >i2
=0	

Eventually, for each ip∈�p
0 there is arc �ip−1�ip� in G with ip−1∈�p−1

0 . Thus,

>ip
=>ip−1

=0	 �
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